CMOS plasmonic waveguides co-integrated with LPCVD-based Si3N4 via a butt-coupled interface
نویسندگان
چکیده
Plasmonic technology has attracted intense research interest enhancing the functional portfolio of photonic integrated circuits (PICs) by providing Surface-Plasmon-Polariton (SPP) modes with ultra-high confinement at sub-wavelength scale dimensions and as such increased light matter interaction. However, in most cases plasmonic waveguides rely mainly on noble metals and exhibit high optical losses, impeding their employment in CMOS processes and their practical deployment in highly useful PICs. Hence, merging CMOS compatible plasmonic waveguides with low-loss photonics by judiciously interfacing these two waveguide platforms appears as the most promising route towards the rapid and costefficient manufacturing of high-performance plasmo-photonic integrated circuits. In this work, we present butt-coupled plasmo-photonic interfaces between CMOS compatible 7μm-wide Aluminum (Al) and Copper (Cu) metal stripes and 360×800nm Si3N4 waveguides. The interfaces have been designed by means of 3D FDTD and have been optimized for aqueous environment targeting their future employment in biosensing interferometric arrangements, with the photonic waveguides being cladded with 660nm of Low Temperature Oxide (LTO) and the plasmonic stripes being recessed in a cavity formed between the photonic waveguides. The geometrical parameters of the interface will be presented based on detailed simulation results, using experimentally verified plasmonic properties for the employed CMOS metals. Numerical simulations dictated a coupling efficiency of 53% and 68% at 1.55μm wavelength for Al and Cu, respectively, with the plasmonic propagation length Lspp equaling 66μm for Al and 75μm for Cu with water considered as the top cladding. The proposed interface configuration is currently being fabricated for experimental verification.
منابع مشابه
Butt-coupled interface between stoichiometric Si3N4 and thin-film plasmonic waveguides
Plasmonic technology has emerged as the most promising candidate to revolutionize future photonic-integrated-circuits (PICs) and deliver performance breakthroughs in diverse application areas by providing increased light-matter interaction at the nanometer scale, overcoming the diffraction limit. However, high insertion losses of plasmonic devices impede their practical deployment in PICs. To o...
متن کاملLow loss, high contrast optical waveguides based on CMOS compatible LPCVD processing
A new class of integrated optical waveguide structures is presented, based on low cost CMOS compatible LPCVD processing. This technology allows for medium and high index contrast waveguides with very low channel attenuation. The geometry is basically formed by a rectangular crosssection silicon nitride (Si3N4) filled with and encapsulated by silicon dioxide (SiO2). The birefringence and minimal...
متن کاملEfficient coupling between Si3N4 photonic and hybrid slot-based CMOS plasmonic waveguide
Bringing photonics and electronics into a common integration platform can unleash unprecedented performance capabilities in data communication and sensing applications. Plasmonics were proposed as the key technology that can merge ultra-fast photonics and low-dimension electronics due to their metallic nature and their unique ability to guide light at sub-wavelength scales. However, inherent hi...
متن کاملTM Grating Coupler on Low-Loss LPCVD based Si3N4 Waveguide Platform
We demonstrate, for the first time to our knowledge, a fully etched TM grating coupler for low-loss Low-Pressure-Chemical-Vapor-Deposition (LPCVD) based silicon nitride platform with a coupling loss of 6.5 dB at 1541 nm and a 1 dB bandwidth of 55 nm, addressing applications where TM polarization is a pre-requisite. The proposed GC and the 360 nm × 800 nm strip based Si3N4 waveguides have been f...
متن کامل1 1 TM Grating Coupler on Low - Loss 2 LPCVD based Si 3 N 4 Waveguide Platform 3
We demonstrate, for the first time to our knowledge, a fully etched TM grating coupler for low-loss 12 Low-Pressure-Chemical-Vapor-Deposition (LPCVD) based silicon nitride platform with a coupling 13 loss of 6.5 dB at 1541 nm and a 1 dB bandwidth of 55 nm, addressing applications where TM 14 polarization is a pre-requisite. The proposed GC and the 360 nm × 800 nm strip based Si3N4 15 waveguides...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018